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Generation of superpositions of coherent states
of the motion of a trapped ion
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Abstract. We propose a method for preparing superpositions of coherent states of the motion of an ion in
an anisotropic two-dimensional trap, in which the ion is tightly bound in the y direction. In the scheme the
ion is excited by two resonant laser beams with equal amplitude, propagating along the x and y directions,
respectively. In the Dicke-Lamb limit, an initial coherent state of the ion motion can be converted into a
superposition of several coherent states on a circle through the laser-ion interactions and state-selective
measurements on the ion.

PACS. 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions – 42.50.Dv Nonclas-
sical field states; squeezed, antibunched, and sub-Poissonian states; definitions of the phase of the field;
phase measurements

There has been much interest in the problem of gen-
erating arbitrary nonclassical states in quantum optics.
In the context of cavity QED various schemes [1–4] have
been proposed for the generation of any Fock state su-
perposition of an electromagnetic field. Also, using cav-
ity QED techniques a number of theoretical schemes [5]
have been proposed for preparing superpositions of coher-
ent states, which can also construct any quantum state
approximately [6]. However, the presence of dissipation
makes it difficult to realize the fragile nonclassical states
of light fields.
On the other hand, recent advances in laser cooling

and ion trapping have opened new prospects in the field
of quantum state preparation and observation. When a
trapped ion is driven by laser fields, its internal degrees
and external degrees are coupled by its interaction with
laser fields. Hence, by adjusting the laser fields one can
control the vibrational motion of the trapped ion. The
virtue of the exteremely weak coupling between the vibra-
tional modes and the external environment is that it pro-
vides the possibilities of preparing and observing nonclas-
sical states with a high degree of stability. Recently, pro-
posals have been made for generating various nonclassical
vibrational states of a trapped ion such as Fock [7], squeez-
ing [8], even and odd coherent [9,10], pair coherent [11],
and pair cat [12] states. The scheme for the generation of
Fock state superposition has also been proposed [13]. To
date, motional Schrödinger cat [14], Fock, squeezed, and
coherent [15] states have been observed
In this paper we make a proposal for generating ar-

bitrary superpositions of equidistant coherent states on a
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circle in phase space for the motion of an ion in a two-
dimensional (2D) anisotropic trap. In the scheme, the in-
ternal and external states of the ion are first entangled by
interaction with laser beams. Then a measurement of the
internal state projects the vibrational motion to a super-
position of two coherent states if the motion is initially
in a coherent state. Repeated interactions and detections
allow the generation of superpositions of several coherent
states on a circle in phase space.

Suppose a two-level ion is in a 2D trap characterized by
vibrational frequencies νx and νy in the x and y directions,
respectively. The ion is driven by two laser beams, tuned
to the ion transition frequency, propagating along the x
and y directions, respectively. The Hamiltonian for such a
system is

H = νxa
+a+ νyb

+b+ ω0Sz + [λE
−(x, y, t)S− +H.c.],

(1)

where a+ (b+) and a (b) are the creation and annihilation
operators for the vibrational motion for the ion in the x (y)
direction, Sz, S

± are the electronic flip operators for the
ion transition, νx and νy are the trap frequencies in the x
and y directions, respectively, ω0 and λ are the transition
frequency and dipole matrix element for the two-level ion,
respectively. E−(x, y, t) is the negative frequency part of
the classical driving field

E−(x, y, t) = Exe
i(ω0t−k0x+φx) + Eye

i(ω0t−k0y+φy),
(2)
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where Ej and φj (j = x, y) indicate the amplitudes and
phases of the driving fields, and k0 is the wave vector of
the field.
In the resolved sideband limit the ion-laser interaction

Hamiltonian can be described by the nonlinear Jaynes-
Cummings model [9,16]. In the interaction picture the
Hamiltonian (1) can be written as

Hi =
∞∑
k=0

[
Ωxe

−iφxe−η
2
x/2
(iηx)

2k

(k!)2
a+kak

+Ωye
−iφye−η

2
y/2
(iηy)

2k

(k!)2
b+kbk

]
S+ +H.c., (3)

where Ωj = λEj are the Rabi frequencies, and

ηj =
√
k20/2Mνj are the Lamb-Dicke parameters with M

being the mass of the ion.
We consider the case where the ion is confined in a

highly 2D anisotropic trap [17] with νx � νy, i.e., the
ion is tightly bound in the y direction. In the Lamb-Dicke
regime (ηy � ηx � 1), we can expand equation (3) up to
the second order in ηx and zero order in ηy. Then we have

Hi =
[
Ωxe

−iφx
(
1− η2xa

+a
)
+Ωye

−iφy
]
S+ +H.c.

(4)

With the choice Ωx = Ωy = Ω and φx = π, φy = 0, we
obtain

Hi = ga
+aS+ +H.c., (5)

where g = Ωη2x.
We now assume that the vibrational motion is initially

in the superposition of Fock states

|ψv(0)〉 =
∞∑
n=0

Cn |n〉 , (6)

and the ion initially in the ground state |g〉. We first excite
the ion only with the laser in the y direction tuned to the
ion transition frequency. In this case the Hamiltonian for
this system is

Hy = Ωye
−iφyS+ +H.c. (7)

For a given time such an interaction leads to the following
transition

|g〉 −→ u1 |g〉+ v1 |e〉 , (8)

where u1, v1 are complex parameters controllable by ad-
justing the amplitude and phase of the classical field [3].
We now let the ion interact with the two lasers prop-

agating along the x and y directions, respectively, and

choose the parameters appropriately so that the interac-
tion is described by the Hamiltonian of equation (5). After
an interaction time τ the system evolves to

|ψ(τ)〉 =
∞∑
n=0

Cn {[u1 cos(ngτ) − iv1 sin(ngτ)] |g〉

+ [v1 cos(ngτ)− iu1 sin(ngτ)] |e〉} |n〉 . (9)

If we now detect the ion in the excited state |e〉 the system
collapses to

∣∣ψ1v〉 = N1
∞∑
n=0

Cn [v1 cos(ngτ)− iu1 sin(ngτ)] |n〉 ,
(10)

where N1 is a normalization factor. The probability of
finding the ion in the state |e〉 is about 1/2. Suppose that
the vibrational motion is initially in the coherent state
|α〉, which can be produced from the vacuum state by a
spatially uniform classical driving field [15]. In this case
the coefficients are given by

Cn = e
− |α|

2

2
αn
√
n!
. (11)

Then we have

∣∣ψ1v〉 = 12N1[(v1 − u1)
∣∣αeigτ〉+ (v1 + u1) ∣∣αe−igτ〉 .

(12)

We now obtain a superposition of two coherent states with
variable coefficients.
We repeat the above mentioned procedure M times.

Before the Mth interaction of the ion with the laser fields
the vibrational motion is assumed to be in

∣∣ψM−1v

〉
=

M−1∑
k=0

dM−1k

∣∣αM−1e2ikgτ 〉 , (13)

where

αM−1 = αe
−i(M−1)gτ . (14)

Then the ion is transformed into the superposition state
uM |g〉 + vM |e〉 through its interaction with the laser in
the y direction. After such an interaction the ion is driven
by two lasers in the x and y directions, respectively, in the
above mentioned manner. After a given interaction time
τ if the ion is detected in its excited state we obtain

∣∣ψMv 〉 =
M∑
k=0

dMk
∣∣αMe2ikgτ 〉 , (15)
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where

dM0 = NM
vM + uM
2

dM−10 ,

...
...

dMk = NM

[
vM − uM
2

dM−1k−1 +
vM + uM
2

dM−1k

]
,
(16)

...
...

dMM = NM
vM − uM
2

dM−1M−1,

with NM being a normalization factor.
In order to get the state

∣∣ψMv 〉 with desired coefficients
dMk we express unknown coefficients d

M−1
k in terms of the

known values dMk [1]

dM−1k =
2

vM + uM

k∑
j=0

(−1)jdMk−j

(
vM − uM
vM + uM

)j
.
(17)

We then substitute the dM−1M−1 thus obtained into the last
equation of the set (16) and get the characteristic equation
for ρM = (vM − uM )/(vM + uM )

M∑
j=0

(−1)jdMM−j(ρM )
j = 0. (18)

We can solve this equation numerically and choose one
of the complex roots for ρM . Without loss of generality,
we can assume that uM is a positive number. Then by

the equality uM

√
1 + |(1 + ρM )/(1− ρM )|

2
= 1 we can

determine the parameters uM and vM . Substituting the
obtained uM and vM into equation (17) we derive the

coefficients dM−1k for the state
∣∣∣ψM−1f

〉
.

We take
∣∣∣ψM−1f

〉
as a new state and repeat the above

calculations. Then we get the parameters uM−1 and vM−1

and the state
∣∣∣ψM−1f

〉
which containsM − 1 components.

Repeat the procedure until we arrive at the coherent state
|α〉. Hence, we get M double values uk and vk which de-
fine the M transformations we have to perform on the ion
before it is driven by two laser beams during the corre-
sponding interactions in order to obtain the desired state∣∣∣ψMf
〉
from the coherent state |α〉.

Finally, we give a brief discussion of the feasibility of
the proposed scheme. In order to obtain a superposition
of M + 1 coherent states one has to find the ion in the
state |e〉 inM consecutive measurements. The probability
for this is about 1/2M , which is exponentially decreased.

Therefore, the method is restricted to the small value of
M . However, it has been shown that many quantum states
can be well approximated even by superpositions of even a
small number of coherent states [6]. Therefore, we believe
the present scheme may provide experimental possibilities
for quantum state engineering for the vibrational motion
of a trapped ion.
Added note: after the submission of this manuscript

we became aware that a paper by Gerry [18] has proposed
the generation of even and odd coherent states essentiallly
using the same method. However, the problem of how to
generate arbitrary superpositions of coherent states on a
cirlce in phase space is not discussed.
This work was supported by the National Natural Sci-

ence Foundation of China.
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